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Abstract. Avalanches, or Avalanche-like, events are often observed in the dynamical behaviour of many
complex systems which span from solar flaring to the Earth’s crust dynamics and from traffic flows to
financial markets. Self-organized criticality (SOC) is one of the most popular theories able to explain this
intermittent charge/discharge behaviour. Despite a large amount of theoretical work, empirical tests for
SOC are still in their infancy. In the present paper we address the common problem of revealing SOC from
a simple time series without having much information about the underlying system. As a working example
we use a modified version of the multifractal random walk originally proposed as a model for the stock
market dynamics. The study reveals, despite the lack of the typical ingredients of SOC, an avalanche-like
dynamics similar to that of many physical systems. While, on one hand, the results confirm the relevance
of cascade models in representing turbulent-like phenomena, on the other, they also raise the question
about the current state of reliability of SOC inference from time series analysis.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management

1 Introduction

The theory of self-organized criticality (SOC) has been
developed in the late eighty’s by Bak, Tang and Wiesen-
feld [1], in order to explain the ubiquity of power laws in
nature. The key concept of SOC is that complex systems
“naturally” self-organize to a globally stationary intermit-
tent state in which avalanche-like events are power law
distributed. These features are similar to those found in
physical systems at the critical point [2]. The prototyp-
ical model of a system exhibiting SOC behaviour is the
2D sandpile [1]. Here the cells of a grid are filled by ran-
domly dropping grains of sand (external driving). When
the gradient between two adjacent cells exceeds a certain
threshold a redistribution of the sand occurs, leading to
more instabilities and further redistributions. The char-
acteristics of this system, indeed of all systems exhibiting
SOC, is that the distribution of the avalanche sizes, their
duration and the energy released, obey power laws.

Remarkably, this kind of scale-free intermittent evolu-
tion is similar to that observed in many physical and social
systems. Examples include astrophysical and geophysical
plasmas [3,4], earthquakes [5], evolutions of species [6],
traffic dynamics [7], wars [8] and the stock market [9–12] (a
recent review on the subject can be found in reference [9]).
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Despite the theoretical interest, reliable tests to prove the
presence of SOC in real systems are still in their infancy.
Some attempts have been made in the contest of solar flar-
ing [13], astrophysical [14,15] and laboratory [16,17] plas-
mas and the stock market [18]. These works, while leaving
open the question of a SOC behaviour, clearly show that
the evolution of these systems can be well described by
an avalanche-like dynamics characterized by power laws
in the avalanche size, duration and waiting time between
them. The presence of correlation between laminar times,
that is the time elapsed between two avalanches, in par-
ticular, has raised objections to the relevance of SOC in
these contexts. In fact, due to the lack of memory in the
random external driving commonly used in the simula-
tions of conservative SOC systems, the probability distri-
bution function (PDF) of laminar times actually follows
an exponential decay [19]. However, for non-conservative
systems, power laws can still be observed in the presence
of temporal correlations of the avalanches near the SOC
state [20,21]. Such temporal correlation could also be due
to the intrinsic memory process (possibly chaotic) in the
driver [22,23].

Motivated by recent observations of avalanche-like dy-
namics in financial time series [18], we investigate a pos-
sible similar behaviour in the popular multifractal ran-
dom walk (MRW) originally proposed in reference [24] as
a paradigm for the stock market behaviour. This model,
although not presenting the characteristic mechanisms of
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SOC, such as a threshold triggering for the avalanches,
is able to reproduce most of the stylized features of the
stock market. Moreover, the MRW belongs to a family of
cascade-like models widely used to reproduce the statisti-
cal features of the velocity fluctuations in hydrodynamic
turbulence and, therefore, the discussions outlined in the
next sections go beyond their application to finance but
can be extended to every complex system which displaying
a turbulent-like dynamics.

In the next section we introduce the asymmetric MRW
proposed by Chen, Jayaprakash and Yuan [25], which
avalanche dynamics is investigate in detail in the rest of
the paper. In Section 3 we introduce the method of analy-
sis while the results are exposed in Section 4. Discussions
and conclusions are left for the last section.

2 The MRW model: the CJY version

Recently, the study of the stock market, seen as a complex
system, has attracted the attention of many physicists (for
reviews see Refs. [12,26–28]). Its dynamical behaviour is
characterized by “stylized facts” mainly concerning the
logarithmic returns, r(t) = ln [P (t)/P (t− 1)] (where P (t)
is the stock price), and their absolute values, that can
be regarded as a measure of the volatility, v(t) = |r(t)|.
Such stylized facts have been used as a guide for validat-
ing phenomenological models of stock price fluctuations.
Among them, the appearance of “fat tails” in the PDF of
the logarithmic returns, related to frequent large fluctu-
ations in price, and the long time correlations present in
the volatility, a phenomenon known as volatility clustering,
have been extensively investigated in the econophysics lit-
erature [29–32]. The evidence of leptokurtic distributions
in financial time series leads to immediate analogies with
the longitudinal fluctuations of turbulent flows where a
similar dynamics is observed, although differences have
been pointed out as well [26]. Motivated by the aforemen-
tioned evidence, cascade models, originally developed to
reproduce the characteristic features of intermittency in
hydrodynamic turbulence, have been applied, with suc-
cess, to reproduce some stylized facts of the stock market
dynamics1.

In this framework, one of the most popular mod-
els is the MRW originally proposed by Bacry, Delour
and Muzy [24]. The version that we are going to use
in the present investigation has been proposed by Chen,
Jayaprakash and Yuan [25], referred to as CJY in the

1 In hydrodynamic turbulence “cascade” refers to the flow
of energy from the largest scales, where it is injected, toward
the smallest ones where it is finally dissipated. In the market
contest, instead, it is assumed that there exists a flow of in-
formation among the different temporal scales adopted by the
traders. A further discussion on the subject is outside the scope
of this work but the interested reader can refer to the seminal
book of Frisch [33] for a general review of cascade models in
turbulence and references [34–38] for applications to the stock
market.

rest of the paper. In the CJY model the returns are ex-
pressed by

r(t) = δt zt, (1)

where zt is a Gaussian random variable with zero mean
and unitary standard deviation, while δt represents the
one-step volatility. The dynamics of the model, and there-
fore the capability to reproduce the stylized facts of the
stock market, is related to the dynamics of the variable
δt: small variations lead to an intermittent behaviour in
r(t), similar to the one observed in the financial markets.
Specifically, we can write δt as

δt = δ0 γ
n(t), (2)

where δ0 is related to the amplitude of the fluctuations
while γ to their intermittency. The term n(t), the core of
the model, is a bounded random walk with increments

∆n(t) = ηt + αΨ(t) − β η̄. (3)

Here

Ψ(t) = K1 ηt−KNc+1 ηt−Nc−1 +
Nc∑

i=1

[Ki+1−Ki] ηt−i, (4)

with ηt independent random variables, with average η̄,
which assume the values +1 with probability p and −1
with probability 1− p. In our simulations η̄ = 2p− 1 < 0.
This term, that alone can reproduce volatility clustering,
has been found to be necessary in order to reproduce some
scaling properties of the conditional fluctuations observed
in financial data [25]. The second term in the increment,
Ψ(t), has the ability to recover the long-time correlations
of the market volatility and, from now on, we will refer to
it as the multifractal increment2. Its strength coefficient,
α, is related to the degree of intermittency of the time se-
ries and, therefore, to the time scale of process. The ker-
nel used in equation (4) for the convolution is Ki = 1/

√
i

and we fix the memory steps to Nc = 1000 in the simu-
lations. The last term of equation (3), controls the drift
rate in n(t), instead, with strength β, and, therefore, adds
more flexibility to the model. A more detailed discussion
on the present model with α = β = 0 can be found in
reference [41]. The parameter γ is fixed to 1.05 in all the
simulations and, following reference [25], it is linked to α
and p according to:

α =
α0

ln(γ)
, (5)

p =
1

1 + γ2
. (6)

These particular choices are appropriate for a correct re-
production of the observed statistical features of the data.
Note also that, for the previous choice of the parameter γ,

2 Equation (4), is related to the original formulation of the
MRW in reference [24] where the logarithmic variance is ex-
pressed in terms of a convolution between a memory kernel
and a random process as reported in references [39,40].
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Fig. 1. (a) Part of the time series of logarithmic returns for
daily data of the S&P500 index, used to calculate the PDF in
(c). The all set spans from 3/1/1950 to 18/7/2003. (b) Time
series generated from the model of equations (2) and (3) with
parameters γ = 1.05, α0 = 0.1, β = 1.3 and δ0 = 1. The two
time series shown in the plot have been standardized accord-
ing to r(t) → (r(t) − 〈r〉)/σ(r), where 〈. . .〉 and σ represent,
respectively, the average and the standard deviation over the
period in examination. (c) Comparison between the PDFs in
(a) and (b). The PDF generated with the parameters γ = 1.05,
α0 = 0.2, β = 4.0 and δ0 = 1 is also shown.

namely 1.05, the probability distribution of the random
variable in the multifractal increment, equation (6), be-
comes slightly asymmetric, p = 0.4756, in contrast with
the symmetry of the original MRW [24]. As previously
mentioned, we impose reflecting boundaries for n(t) in or-
der to prevent the realization of extremely large (unreal-
istic) fluctuations in the simulation of the market activity,
namely 0 ≤ n(t) ≤ nmax, with nmax = ln(30)/ ln(γ). By
doing that, δt in equation (1) is bounded between δ0 and
30 δ0.

In Figure 1 we compare the time series generated with
the model of equations (2) and (3), Figure 1b, and the time
series of daily returns for the S&P500 index3, Figure 1a.
The parameters used in the simulation, and reported in
the caption of the figure, have been chosen in order to
match the properties of the financial data set, as under-
lined by the similarities in the PDFs of the two processes,
Figure 1c. Note, however, some discrepancies in the tails
of the PDFs. A possible explanation is that the dynamics
of the extreme events differs from the dynamics of the bulk
of the distribution (generated by the CYJ model, in this
case) and they could be interpreted as “outliers” [40,42].
However, finite size effect in the relatively short time series
of the S&P500 should be also considered.

3 Wavelet transform filtering and analysis
method

As mentioned in the introduction, many complex sys-
tems show an intermittent activity: quiescent periods are

3 The data have been collected from 3/1/1950 to 18/7/2003
for a total of 13 468 samples.

suddenly interrupted by bursts of activity. This kind of
non-stationary dynamics is often related to multi-scale
phenomena and most of the time standard analysis tech-
niques can fail to reveal some important events that are
localized in time or scale [33]. This is, for example, when
using elementary filters: along with the noise background
also meaningful information can be filtered out [18].

In order to overcome these problems, wavelet based
techniques are becoming more and more popular in com-
plex systems applications [43]. This approach enables one
to decompose the signal in terms of scale and time units
and so to separate its coherent parts (or “avalanches”)
— that is, the bursty periods related to the tails of the
PDF — from the noise-like background, thus enabling an
independent study of the intermittent and the quiescent
intervals [14,16,18,44,45].

The idea behind the wavelet transform is similar to
that of windowed Fourier analysis and it can be shown
that the scale parameter is indeed inversely proportional
to the classic Fourier frequency. The main difference be-
tween the two techniques lies in the resolution in the time-
frequency domain. In Fourier analysis the resolution is
scale independent, leading to aliasing of high and low fre-
quency components that do not fall into the frequency
range of the window. However, in the wavelet decompo-
sition the resolution changes according to the scale (i.e.
frequency). At smaller scales the temporal resolution in-
creases at the expense of frequency localization, while for
large scales we have the opposite. For this reason the
wavelet transform can be considered a sort of mathemat-
ical “microscope”. While the Fourier analysis is still an
appropriate method for the study of harmonic signals,
where the information is equally distributed, the wavelet
approach becomes fundamental when the signal is inter-
mittent and the information localized.

For a time series analysis it is often preferable to use a
discrete wavelet transform (DWT). The DWT can be seen
as a appropriate sub-sampling of the continuous wavelet
transform (CWT) by using dyadic scales. That is, one
chooses λ = 2j , for j = 0, ..., L−1, where L is the number
of scales involved, and the temporal coefficients are sep-
arated by multiples of λ for each dyadic scale, t = n2j ,
with n being the index of the coefficient at the jth scale.
The DWT coefficients, Wj,n, can then be expressed as

Wj,n = 〈f, ψj,n〉 = 2−j/2

∫
f(u)ψ(2−ju− n)du, (7)

where ψj,n is the discretely scaled and shifted version of
the mother wavelet. The wavelet coefficients are a measure
of the correlation between the original signal, f(t), and the
mother wavelet, ψ(t) at scale j and time n.

For the DWT, if the set of the mother wavelet and its
translated and scaled copies form a complete orthonormal
basis for all functions having a finite squared modulus,
then the energy of the starting signal is conserved in the
wavelet coefficients. This property is, of course, extremely
important when analyzing physical time series [45]. Fol-
lowing reference [18], we use the Daubechies-4 as mother
wavelet [46] for the analysis presented in the next sec-
tions. Tests performed with different sets do not lead to
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Fig. 2. PDFs of the original time series, Figure 3a, obtained
with the model of equation (2) (γ = 1.05, α0 = 0.1, β = 1.3 and
δ0 = 1) and its filtered version, Figure 3b. A Gaussian is also
plotted for visual comparison (dashed line). The Daubechies-4
wavelet used for the analysis is shown in the inset.

any qualitative difference in the results. A more compre-
hensive discussions on the general properties of wavelets
and their applications are given in references [43,46].

The importance of the wavelet transform in the study
of turbulent-like signals lies in the fact that the large
amplitude wavelet coefficients are related to the extreme
events in the tails of the PDF, while the laminar or qui-
escent periods are related to the ones with smaller ampli-
tude [45]. In this way it is possible to define a criterion
whereby one can filter the time series of the coefficients
depending on the specific needs. In our case we adopt
the method used in references [14,18,45] and originally
proposed by Katul et al. [47]. In this method wavelet co-
efficients that exceed a fixed threshold are set to zero,
according to

W̃j,n =
{
Wj,n if W 2

j,n < C · 〈W 2
j,n〉n,

0 otherwise, (8)

here 〈. . .〉n denotes the average over the time parameters
at a certain scale and C is the threshold coefficient. Once
we have filtered the wavelet coefficients W̃j,n we perform
an inverse wavelet transform, obtaining a smoothed version
of the original time series.

The residuals of the original time series with the fil-
tered one correspond to the bursty periods, or avalanches,
which we aim to study. An example of the filtering tech-
nique in terms of PDFs is given in Figure 2.

Once we have isolated the noise part from our signal
series we are able to perform a reliable statistical analysis
on the avalanches of the residual time series. In particular,
we define the avalanches as the set of events during which
the volatility of the residual time series, vres(t) ≡ |rres(t)|,
is constantly above a positive small threshold, ε ≈ 0. It
is also possible to find an optimal value for the choice
of the threshold parameter C in a way that the filtered
time series is, as close as possible, uncorrelated Gaussian
noise. From previous studies, this parameter is found to be
C ∼ 1 [18]. In any case, the resulting statistical analysis
is qualitatively unchanged as long as 0 � C � 4 [18,45].
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Fig. 3. (a) Window of the time series obtained with the
model of equation (2) (γ = 1.05, α0 = 0.1, β = 1.3 and
δ0 = 1). (b) Filtered version of the time series in (a) obtained
with the Daubechies-4 wavelet. In order to properly identify
the avalanches we create a residual time series by subtract-
ing the filtered time series from the original one. This noise
removal technique presents advantages to standard threshold
methods when applied to multiscale systems [18]. (c) Abso-
lute value of the residuals, or residual volatility, used to ex-
tract the avalanches, as explained in the text. Two examples
of avalanches, among the many preset, are underlined by the
dashed lines in (c). The horizontal line slightly above zero rep-
resents the small threshold ε.

A graphic example of the procedure for extracting the
avalanches is illustrated in Figure 3.

In analogy with the dissipated energy in a turbulent
flow, we define the size of an avalanche, E, as the inte-
grated value of the squared volatility over each coherent
event of the residual time series. The duration, D, is de-
fined as the interval of time between the beginning and
the end of a coherent event, while the laminar time, L,
is the time elapsing between the end of an event and the
beginning of the next one.

4 Time series analysis

In the previous section we have seen how the wavelet
multi-scale filtering technique is an excellent tool to re-
move uncorrelated Gaussian noise from an input signal. In
particular, this filtering method becomes relevant when-
ever the examined time series presents an intermittent be-
haviour, that is an irregular switching, between periods
characterized by large fluctuations and noise-like ones. By
using this technique, the avalanches, which characterize
an emergent behaviour in the dynamics, are highlighted at
the expense of the uninteresting background. In this way
we can make a proper statistical analysis of the quantities
that characterize these coherent events, Figure 3.

The statistical study of the avalanches identified with
the wavelet technique is of great interest, not only because
this would further test the capability of this model to re-
produce the stylized facts of the stock market, but it could
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Fig. 4. PDFs of the avalanche sizes, E, as a function of the
parameter α0. For each value of this parameter the time series
of E is noise-like and the correspondent distribution displays
an exponential decay. The strength α0 controls the decay rate
of the distribution. The PDF for the MRW (X) with α = 0.25
is reported as well.

also shed some light on the relevance of this test in distin-
guishing between SOC and non-SOC processes in a time
series analysis.

The analysis is carried out by studying how the statis-
tics of the avalanches change as we tune the parameters of
the CJY model. The time series generated with this algo-
rithm have a length N ∼ 5×105 (N = 219). Moreover, we
investigate the specific relevance of each term composing
the increments of the variable n(t), equation (3). In order
to do this, we independently analyze the time series gener-
ated with different expressions for the increments, ∆n(t):
for each simulation we consider a random walk for n(t)
with boundaries nmin = 0 and nmax = ln(30)/ ln(γ).

We also fix C = 1 as the threshold coefficient for the
wavelet analysis. This particular value of C is close to the
optimization value in the de-noise procedure. However a
different choice of this parameter would not change the
qualitative results of our analysis [18].

4.1 The role of multifractal increments

We first investigate the avalanche dynamics generated by
the multifractal increments, that is the part of the CJY
model that is related to the original formulation of the
MRW. In this case equation (3) reads as

∆n(t) = αΨ(t), (9)

where Ψ(t) is given by equation (4) and the strength co-
efficient is expressed by α = α0/ ln(γ) with γ = 1.05.

The avalanche analysis, resulting from the wavelet fil-
tering, for the size E, duration D, and laminar times L,
is carried out for different values of α0. This parameter,
and α as a consequence, is related to the degree of in-
termittency of the time series and, therefore, to the time
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scale of the process. For α0 � 0.05, the dynamics of r(t)
is dominated by noise and its PDF is a Gaussian. In the
stock market contest, as well as in turbulence, this corre-
sponds to observe the fluctuations at large scales. As we
move this parameter toward larger values, the time series
of r(t) becomes more and more intermittent, giving rise
to the large fluctuations which characterize the broad tails
of the PDFs of turbulent phenomena at small scales. The
results are shown in Figures 4–6.

From these plots it is possible to observe how the
purely multifractal model is not able to reproduce the
power law behaviour observed in real data sets. In par-
ticular, the PDFs for E and D of the avalanches decay
exponentially, independently on the value of α0. This is an
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indication of the randomness behind the avalanche genera-
tion process. The distribution of laminar times in Figure 6,
instead, show a Poisson-like shape for small values of this
parameter, α0 = 0.05, while they start slowly to converge
toward a power law shape, P (L) ∼ L−ν , for α0 � 0.2. The
resulting exponent, ν ∼ 2.3, is similar to the one found in
the empirical studies [18].

For completeness, we study also the avalanche dy-
namics by using the standard implementation of the
MRW [39]. In this case δt = δ0e

n(t) and ∆n(t) is given
by equation (9) where, this time, ηt is a Gaussian ran-
dom variable with zero mean and unitary standard de-
viation. The shapes of the PDFs of E and D resulting
from the analysis, shown in Figures 4 and 5 for α = 0.25,
display a similar α dependence as the CYJ version, as ex-
pected. However, the PDF of laminar times, at least at
small temporal scales, Figure 6, display a clearer power
low behaviour compared to the CYJ model.

4.2 The complete CJY model

We turn now our attention to the complete CYJ model
of equation (3). In this case, it has been shown [25] that
a proper tuning of the parameters can reproduce most
of the stylized features of the stock market. A particu-
lar good agreement between the model and the empirical
data has been found by fixing γ = 1.05 and δ0 = 1.0, for
the two couples of parameters (α0 = 0.1, β = 1.3) and
(α0 = 0.2, β = 4.0) as strength parameters for the mem-
ory term and the drift respectively. It is, therefore, of par-
ticular interest to explore the avalanche behaviour using
these parameters. The results of the analysis are shown in
Figures 7–9 for E, D and L.

In this case, for some order of magnitude, we find a
power law behaviour for the quantities under consider-
ation. This is in qualitative agreement with the results
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found for the stock market. In particular, the exponents of
the power laws seem to be close to the ones found for the
analysis of the tick-by-tick Nasdaq E-mini Futures [18].
Note that a scale-free avalanche dynamics has also been
observed in other reduced models of turbulence, the shell
models [13], via a simple threshold technique.

This result can have important consequences regard-
ing the possible identification of SOC in the stock market,
and other complex systems in general, through a time se-
ries analysis. In fact, we have shown that an avalanche-like
behaviour can also be observed in models, such as the one
presented in this work, in which the characteristic ingre-
dients of SOC, such as threshold dynamics, are actually
missing. This, of course, does not rule out the possibility of
SOC but, nevertheless, more relevant and discriminating
tests become necessary.

We further investigate our model by studying how the
distribution of the E, D and L change with the drift
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Fig. 10. Dependence on the parameter β, with α0 = 0.1, for
the PDF of the size, E, of the avalanche. The drift strength
controls the slope of the power law, which appear to go to
saturation for the higher values of β.
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Fig. 11. Dependence on the parameter β, with α0 = 0.1, for
the PDF for the duration D of the avalanches. Also in this case,
the drift strength controls the slope of the PDF and saturates
for large β.

strength β. In fact, different markets could have different
power law exponents, no universality has been found until
now, and we want to test the elasticity of the CYJ with
respect to this parameter. The PDFs for E, D and L as
functions of β are reported, respectively, in Figures 10–12.

The analysis shows how the parameter β plays an im-
portant role in the dynamics of the model. In fact, al-
though the shape of the PDFs for E and D are robust
against variations of β, the exponent changes with this
parameter. Higher values of β imply a larger value for
ν. The same arguments do not hold for the statistics of
the laminar times, L. In this case the resulting distribu-
tion is pretty much independent of β and could constitute
a limit in the present formulation of the model. A sep-
arate discussion is reserved for β = 0. In this case the
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Fig. 12. The exponent of the power law of the laminar times
between the avalanches, L, do not seem to be sensitive to
changes in the parameter β, which appear to be relevant just
in changing the cut-off of the distribution.

filtering procedure, with C = 1 as optimal value, is not
able to remove all the wavelet coefficients related to the
large fluctuations. As a consequence, the excess of kur-
tosis, Ke = 〈r4〉/〈r2〉2 − 3, of the filtered time series, al-
though still small in absolute value, Ke ∼ 0.2, becomes
more than one order of magnitude larger that in the pre-
vious analysis. This means, to some extent, that there is
not enough Gaussian noise to be filtered out in the time
series! Moreover, the shapes of the PDFs related to the
avalanche dynamics, show a behaviour that is systemat-
ically different from the one observed once the drift is
included, Figures 8, 10 and 12.

As a final note, we consider, for β = 1.3 fixed, how our
analysis would change in the absence of the multifractal
increment, αΨ(t), in equation (3). In doing so, we compare
the case with α0 = 0.1 and α0 = 0. The results are shown
in Figure 13.

While the lack of the multifractal/memory term does
not alter the distribution of laminar times between the
clusters of volatility, it does increase the steepness of the
distribution of E and L. This result is actually expected
since this term builds the correlations inside periods of
high volatility of the market time series, that is the so-
called volatility clustering. By removing it we explicitly
cut off part of the correlations inside the model, resulting
in shorter avalanches.

5 Discussion and conclusion

In the present work we investigated a possible avalanche-
like dynamics in an extended version of the popular multi-
fractal random walk, the CJY, proposed as a paradigm for
the stock market dynamics. We have been able to identify
avalanche-like events in the fluctuations generated by this
model. Subsequently, the statistical properties of these
events have been estimated. The identification of these
clusters goes through an intermediate passage where we
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Fig. 13. PDFs for E (top), D (middle) and L (bottom) for
β = 1.3 and α0 = 0.1, with multifractality, and with α0 = 0,
without the multifractal term.

use a wavelet filtering technique in order to suppress the
contribution of the noise background and, therefore, en-
hance the precision of our measures.

The results show that, for a broad range of the param-
eters, the distribution of size, duration and laminar time
between avalanches follow a power law distribution. A very
similar behaviour has been found in empirical studies on
financial time series [18]. Therefore, we confirm the rele-
vance of the cascade models, and in particular the CYJ
version of the MRW, in modelling the stock market dy-
namics. Our results also extend beyond the financial envi-
ronment since this framework is quite general for describ-
ing dissipative, intermittent, systems, such as solar flaring
or MHD turbulence, where an avalanche-like dynamics has
been observed as well [13–17].

Equally important, our results stress how models lack-
ing of typical SOC mechanisms can, nevertheless, mani-
fest an avalanche-like behaviour. In fact, the recognition
of SOC “patterns” could be an artifact of the identifica-
tion method itself. In this regard, it is worth mentioning
that simple threshold techniques, when applied to time
series generated by SOC-free processes, can lead to the
detection of avalanches with size distributions (according
to some specific definition) that are power laws. For ex-
ample, it is well known that the “time for first return to
the origin” of a random walk is power law distributed [40]
despite the lack of any correlation in the time series. A
more sophisticated example is reported in reference [48]
where it has been shown that the behaviour of a self-affine
fractional Brownian motion, when analyzed with a mov-
ing average technique, can mimic the avalanche dynamics
of the Dhar-Ramaswamy sandpile. These results illustrate
the technical ambiguity in the identification of SOC from
time series. As long as we do not have any a priori infor-
mation about the underlying dynamics of the system, it
is very hard to tell if the avalanches that we observe are

a result of a genuine SOC dynamics or any other diffusive
process.

In conclusion, SOC has been claimed, perhaps too
loosely, to play a role in many complex systems, but there
is no method that is reliable enough to test its presence
from the analysis of noisy time series. This is a very rel-
evant issue since, in practical situations, all the available
information regarding a system is encoded in its time se-
ries. Therefore, an extension of this theoretical framework,
which would enable the present gap with empirical analy-
sis to be filled, is of great practical importance and would
probably settle many speculations on the subject.
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